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Outline

• Role of NP in search for physics BSM and other rare 
processes

• Uncertainties in nuclear effects: (un)known (un)knowns

• Examples: 0νββ decay, GT transitions, eA DIS

• Nuclear physics from the SM?

• Problems and progress

• Scalar-isoscalar current nuclear matrix elements



Searches for very rare interactions

• Weakness of weak or dark matter interactions with 
ordinary matter ⇒ big detectors 

• Piles (buckets) of heavy stuff instead of protons

• Specific nuclear transitions sensitive to fundamental 
symmetries: nuclear environment enhances effect 

• Range of nuclei used in detectors

• Neutrino DIS: NuTeV - steel sheets

• Solar Neutrinos @ SNO: D2O

• Dark matter : Na, Si, Ge, Xe, ...

• EDM searches: Rn, Hg, Xe, .. 

• 0νββ decay: Ge, Ca, Xe, ...



How predictive is nuclear physics?

• NP critical to experimental investigations of these interactions

• Phenomenological: poorly understood from a theoretical 
perspective

• Quantifying uncertainties on predictions is difficult

• Ideal experiment: simple nuclei (single isotope) where 
theory is best understood

• Study dependence on target 

• Reality: single target chosen for a host of reasons 

New physics discovery can be robust despite NP

Differentiation of new physics no so easy



0νββ decay



0νββ decay

• Certain nuclei allow observable 
ββ decay
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Figure 1: Representation of the energies of the A = 76 isobars. The single-beta decay (β)—green arrows—
between 76Ge and 76Se is energetically forbidden, hence leaving double beta (ββ)—pink arrow—as the
only decay channel. The two mass parabolas exist because of the pairing interaction that lowers the energy
of even Z—even N nuclei with respect to odd Z—odd N nuclei. For odd A nuclei there is a single mass
parabola, and all single-beta transitions are energetically allowed (taken from J. Menendez’s PhD thesis).

nuclei [3], with lifetimes in the range 1018–1022 y. The alternative is the neutrinoless double-
beta decay (0νββ), proposed by Furry [4] after the Majorana theory of the neutrino [5]. The
neutrinoless decay 0νββ can only take place if the neutrino is a massive Majorana particle
and demands an extension of the standard model of the electroweak interactions, because
it violates the lepton number conservation. Therefore, the observation of the double-beta
decay without emission of neutrinos will sign the Majorana character of the neutrino. The
corresponding nuclear reactions are the following:

A
ZXN−→A

Z+2XN−2 + 2e− + 2νe,

A
ZXN−→A

Z+2XN−2 + 2e−.
(1.1)

Currently, there is a number of experiments either taking place or expected for the
near future—see, for example, [6, 7] and Section 7.3.—devoted to detect this process and to
set up firmly the nature of neutrinos. Most stringent limits on the lifetime are of the order of
1025 y. A discussed claim for the existence of 0νββ decay in the isotope 76Ge (see Section 7.1)
declares that the half-life is about 2.2×1025 y [8]. Furthermore, the 0νββ decay is also sensitive
to the absolute scale of the neutrino masses (if the process is mediated by the so-called mass
mechanism), and hence to themass hierarchy (see Section 2). Since the half-life of the decay is
determined, together with the effective Majorana neutrino mass (defined later in Section 2),
by the nuclear matrix elements for the process NME, its knowledge is essential to predict the
most favorable decays and, once detection is achieved, to settle the neutrino mass scale and
hierarchy.

Another process of interest is the resonant double-electron capture which could
have lifetimes competitive with the neutrinoless double-beta decay ones only if there is a
degeneracy of the atomic mass of the initial and final states at the eV level [9]. For the
moment, high-precision mass measurements have discarded all the proposed candidates
(see [10] for a recent update of the subject). As in the neutrinoless double-beta decay,

Neutrino-less double beta decay 
• Double -decay only appears when regular -decay is energetically 

forbidden or hindered by large J difference. 
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Figure 8: Double-beta decay candidates and their Q-values (adapted from [52]). The “magnificent nine”
are highlighted and two background-relevant energy markers are indicated (see text).

Table 4: Relevant parameters and features of the “magnificent nine” double-beta decay candidates.

Double-beta
candidate

Q-value
(MeV)

Phase space
G01(y−1)

Isotopic abundance
(%)

Enrichable by
centrifugation

Indicative cost
normalized to Ge

48Ca 4.27226 (404) 6.05 × 10−14 0.187 No —
76Ge 2.03904 (16) 5.77 × 10−15 7.8 Yes 1
82Se 2.99512 (201) 2.48 × 10−14 9.2 Yes 1
96Zr 3.35037 (289) 5.02 × 10−14 2.8 No —
100Mo 3.03440 (17) 3.89 × 10−14 9.6 Yes 1
116Cd 2.81350 (13) 4.08 × 10−14 7.5 Yes 3
130Te 2.52697 (23) 3.47 × 10−14 33.8 Yes 0.2
136Xe 2.45783 (37) 3.56 × 10−14 8.9 Yes 0.1
150Nd 3.37138 (20) 1.54 × 10−13 5.6 No —

with some gamma background and with the Radon-induced one; the second group (82Se,
100Mo, and 116Cd) is out of the reach of the bulk of the gamma environmental background but
Radon may be a problem; the candidates of the third group (48Ca, 96Zr, and 150Nd) are in the
best position to realize a background-free experiment. As for the phase space, the situation
is depicted in Figure 9. No great differences are observable among the various candidates,
with the significant exceptions of 76Ge, which presents a small value of only∼ 6 × 10−15 y−1

due to its low Q and, on the other side of 150Nd, characterized by a particularly high value of
∼ 1.5 × 10−13 y−1).

As for the second criterion, natural isotopic abundances are reported in Table 4. Most
of the abundances are in the few % range, with two significant exceptions: the positive case
of 130Te that with its 33.8% value can be studied with high sensitivities even with natural
samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
Section 6.1, an ambitious experiment (aiming at exploring the inverted hierarchy region of
the neutrino mass pattern) needs at least 100 kg of isotope mass. In order to keep the detector
size reasonable (and recalling that the background scales roughly as the total source, and
not isotope, mass), it is clear that isotopic enrichment is a necessary task for almost all high-
sensitivity searches. The generally available enrichment techniques are reported in Table 5.
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0νββ decay

• Certain nuclei allow observable 
ββ decay

• If neutrinos are massive 
Majorana fermions 0νββ decay is 
possible

• Half-life depends critically on the 
nuclear matrix elements of two 
weak currents

Advances in High Energy Physics 5

and final states. With these considerations, the expression for the half-life of the 0νββ decay
can be written as [14, 15]

(
T
0νββ
1/2 (0+ → 0+)

)−1
= G01

∣∣∣M0νββ
∣∣∣
2
(〈mν〉

me

)2

, (3.5)

where 〈mν〉, the effective Majorana neutrino mass, was introduced in (2.1), and G01 is a
kinematic factor (known also as phase-space factor)—dependent on the charge, mass, and
available energy of the process, in the following denoted also as Q-value or simply Q. M0νββ

is the NME object of study in this section. As already discussed, the neutrino mass scale
is directly related to the decay rate. The kinematic factor G01 depends on the value of the
coupling constant gA. Therefore, the NMEs obtained with different gA values cannot be
directly compared. If we redefine the NME as:

M
′0νββ =

(
gA
1.25

)2

M0νββ, (3.6)

the new NMEs M
′0νββ’s are directly comparable no matter which was the value of gA

employed in their calculation, since they share a commonG01 factor—the one calculated with
gA = 1.25. In this sense, the translation of M′0νββ’s into half-lives is transparent.

The NME is obtained from the effective transition operator resulting of the product of
the nuclear currents:

Ω
(
q
)
= −hF(q

)
+ hGT(q

)
σnσm − hT(q

)
Sq
nm, (3.7)

where Sq
nm = 3(q̂σnq̂σm) − σnσm is the tensor operator. The functions h(q) can be labeled

according to the current terms from which they come:

hF(q
)
= hF

vv

(
q
)
,

hGT(q
)
= hGT

aa

(
q
)
+ hGT

ap

(
q
)
+ hGT

pp

(
q
)
+ hGT

mm

(
q
)
,

hT(q
)
= hT

ap

(
q
)
+ hT

pp

(
q
)
+ hT

mm

(
q
)
,

(3.8)

whose explicit form can be found in [12].
Till recently, only haa and hvv terms were considered. However, rough estimates of the

value of these terms taking q ≈ 100MeV give haa ≈ hvv ≈ 1, hap ≈ 0.20, hpp ≈ 0.04, and
hmm ≈ 0.02. Therefore, according to the figures, certainly hap cannot be neglected. Since the
Gamow-Teller contribution will be the dominant one, and both the hpp and hmm have the
same sign and opposite to hap, it seems sensible to keep all these terms in the calculation.
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samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
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0νββ decay nuclear matrix elements

Shell model

Interacting boson 
model

Generator 
coordinate 
method

QRPA

8 Advances in High Energy Physics
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Figure 2: The neutrinoless double-beta decay; ”state-of-the-art” NMEs: QRPA [30] (red bars) and [21, 22]
(diamonds), ISM [31] (squares), IBM [25] (circles), and GCM [26] (triangles).

the 0ν operator to learn which are the properties of the initial and final nuclei to which it is
more sensitive.

4.1. The Role of the Pair Structure of Wave Functions in the NMEs

The two-body decay operator can be written in the Fock space representation as follows:

M̂(0ν) =
∑

J




∑

i,j,k,l

MJ
i,j,k,l

((
a†
i a

†
j

)J
(akal)J

)0


, (4.2)

where the indices i, j, k, and l run over the single-particle orbits of the spherical nuclear mean
field. Applying the techniques of [34], we can factorize the operators as follows:

M̂(0ν) =
∑

Jπ
P̂ †
Jπ P̂Jπ . (4.3)

The operators P̂Jπ annihilate pairs of neutrons coupled to Jπ in the parent nucleus, and
the operators P̂ †

Jπ substitute them by pairs of protons coupled to the same Jπ . The overlap
of the resulting state with the ground state of the grand daughter nucleus gives the Jπ -
contribution to the NME. The—a priori complicated—internal structure of these exchanged
pairs is dictated by the double-beta decay operators.

In order to explore the structure of the 0νββ two-body transition operators, we have
plotted in Figure 3 the contributions to the 0ν GT matrix element as a function of the Jπ

of the decaying pair in the A = 82 and A = 130 cases. The results are very suggestive,
because the dominant contribution corresponds to the decay of J = 0 pairs, whereas the
contributions of the pairs with J > 0 are either negligible or have opposite sign to the leading
one. This behavior is common to all the cases that we have studied and is also present in
the QRPA calculations, in whose context they had been discussed in [23, 35]. To grasp better
this mechanism, we shall work in a basis of generalized seniority s (s counts the number of

[Giuliani & Poves, Adv High Energy Phys 2012 857016]

Is the spread of results representative of the true uncertainty? 



Gamow-Teller : axial charge in nuclei

• Gamow-Teller transitions in nuclei 
are a stark example of problems

• Well measured

• Best nuclear structure calculations 
are systematically off by 20–30%

• Large range of nuclei 
(30<A<60) where spectrum is 
well described

• QRPA, shell-model,...

• Correct for it by “quenching” 
axial charge in nuclei ...
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FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.
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FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iε

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iε log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

[Martinez-Pinedo et al., Phys. Rev. C53, 2602 (1996)]
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The effective gA in the pf-shell
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We have calculated the Gamow-Teller matrix elements of
64 decays of nuclei in the mass range A = 41–50. In all the
cases the valence space of the full pf -shell is used. Agreement
with the experimental results demands the introduction of an
average quenching factor, q = 0.744 ± 0.015, slightly smaller
but statistically compatible with the sd-shell value, thus indi-
cating that the present number is close to the limit for large
A.

PACS number(s): 21.10.Pc, 25.40.Kv, 27.40.+z

The observed Gamow Teller strength appears to be
systematically smaller than what is theoretically ex-
pected on the basis of the model independent “3(N−Z)”
sum rule. Much work has been devoted to the subject
in the last fifteen years [1–4]. The heart of the problem
can be summed up by defining the reduced transition
probability as

B(GT ) =

(

gA

gV

)2

〈στ 〉2, 〈στ 〉 =
〈f ||

∑

k σ
k
t
k
±||i〉√

2Ji + 1
,

(1)

and asking: Is the observed quenching due to a renormal-
ization of the gA coupling constant —originating in non
nucleonic effects— or is it the στ operator that should
be renormalized because of nuclear correlations?

The analysis of some pf -shell nuclei for which very
precise data are available and full 0h̄ω calculations are
possible, strongly suggests that most of the theoretically
expected strength has been observed [5,6] . The quench-
ing factor necessary to bring into agreement the calcu-
lated and measured values is directly related to the am-
plitude of the 0h̄ω model space components in the exact
wave functions. This normalization factor can also be
obtained from (d, p) or (e, e′p) reactions and reflects the

∗gabriel@nuc2.ft.uam.es
†poves@nucphys1.ft.uam.es
‡caurier@crnhp4.in2p3.fr
§zuker@crnhp4.in2p3.fr

reduction in the discontinuity at the Fermi surface in a
normal system. As such, it is a fundamental quantity,
whose evolution with mass number is of interest.

In principle there are two ways of extracting it from
Gamow Teller processes. One is to equate it to the frac-
tion of strength seen in the resonance region in (p, n)
reactions. The alternative is to calculate lifetimes for in-
dividual β decays and show that they correspond to the
experimental values within a constant factor. The latter
procedure is more precise, but demands high quality shell
model calculations that until recently were available only
up to A = 40 [7–9].

Our aim is to extend these analyses to the lower part of
the pf shell. Full 0h̄ω diagonalizations are done using the
antoine code [10] with the effective interaction KB3, a
minimally monopole modified version [11] of the original
Kuo Brown matrix elements [12]. We refer to [13] for
details of the shell model work.

Following ref. [14] we define quenching as follows: for
beta decays populating well-defined isolated states in the
daughter nucleus, the square root of the ratio of the ex-
perimental measured rate to the calculated rate in a full
0h̄ω calculation is called the quenching factor. An av-
erage quenching factor, q, implies an average over many
transitions, and may be incorporated into an effective
axial vector coupling constant:

q =
gA,eff

gA
, (2)

where gA is the free-nucleon value of −1.2599(25) [14].
Following ref. [7] we define

M(GT ) = [(2Ji + 1)B(GT )]1/2 , (3)

so as to have quantities independent of the direction of
the transition. Note here that our reduced matrix ele-
ments follow Racah’s convention [15]. In table I we list
the M(GT ) values and compare them with the exper-
imental results. The table contain all the transitions
known experimentally. We also include the quantum
numbers of the final states, the Q-values, the branch-
ing ratios and the experimental log ft values from which
the B(GT ) values were obtained using

1

T (GT ) ⇠
sX

f

h� · ⌧ ii!f

Points correspond to different nuclei



The EMC effect

• 1983: DIS on Fe target [EMC]

• Proton structure modified in a nuclear environment 

F

A
2 (x) 6= AF

N
2 (x)
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Dependence on A

• Large nuclear effects ~ 30%

• Over last 30 years: studies of target dependence

• No convincing microscopic understanding of its origin 
(EMC = Every Model is Cool)

• Little predictive power
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LQCD to the rescue?

• Nuclear physics is Standard 
Model physics

• ... so calculate ab initio!
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Nuclei: an (exponentially hard)2 problem

• Nuclear spectroscopy? MPb?

• Complexity:  number of
contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales: requires care 
with numerical precision

ΛQCD

Mp

1/a

MPb

0.25

0.94

3

200

GeV

0.005 mq
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• Nuclear spectroscopy? MPb?

• Complexity:  number of
contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales: requires care 
with numerical precision

• Small energy splittings

keV

73Ge
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Nuclei: an (exponentially hard)2 problem

• Nuclear spectroscopy? MPb?

• Complexity:  number of
contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales: requires care 
with numerical precision

• Small energy splittings

• Importance sampling: statistical 
noise exponentially increases with A

keV

73Ge

h0|Tq1(t) . . . q624(t)q1(0) . . . q624(0)|0i
t!1�! # exp(�MPbt)
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The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Proton 

• Variance determined by 

• For nucleus A:

π

π

π

[Lepage ’89]

�2(C) = hCC†i � |hCi|2

signal

noise

⇠ exp [�(MN � 3/2m⇡)t]

signal

noise

⇠ exp [�A(MN � 3/2m⇡)t]

noise ⇠
q
hCC†i ⇠ exp[�3/2M⇡t]

signal ⇠ hCi ⇠ exp[�MN t] N
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The trouble with baryons
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signal/noise const
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@ mπ = 390 MeV

Interpolator choice can be used to suppress noise



Nuclei (A=2,3,4)

NPLQCD Phys.Rev. D87 (2013), 034506 
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• Light nuclei (A<6) will be feasible at the physical quark mass in 
the near future

• Interesting progress with larger nuclei (A=4,8,12,... ) but still a 
major challenge [WD, Orginos Phys.Rev. D87 (2013) 114512]
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Nuclear matrix elements

• Calculations of matrix elements of currents in light nuclei 
just beginning

• For deeply bound nuclei, use the same techniques as for 
single hadron matrix elements

• For near threshold states, need to be careful with volume 
effects

Σ
permutations

O

3 pt function 2 pt function



Nuclear matrix elements

1. Axial coupling to NN system

• pp fusion: “Calibrate the sun” 

• Muon capture: MuSun @ PSI

• d ν → n n e+ : SNO 

2. Twist-2 operators: eg EMC effect

• Velocity dependent DM interactions

• Proof of principle (moments of pion 
PDF in pion gas) [WD, HW Lin 1112.5682]

p

p

e+

ν

d

pp→de+ν

hN,Z|q̄�{µ0Dµ1 . . . Dµn}q|N,Zi



Nuclear sigma terms

• Dark matter direct detection experiments 
look for DM interactions with nuclei (Si, Xe, ...)

• One possible interaction is through scalar 
exchange 

• Accessible via Feynman-Hellman theorem

• At hadronic/nuclear level

• Contributions:

5

0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

lo
g 10

(S
2 b/S

1)
 x

,y
,z

 c
or

re
ct

ed
  

S1 x,y,z corrected (phe)  

3 6 9 12 15 18 21 24 27 30 keVnr

1.3

1.8

3.5

4.6
5.9

7.1

keVee

FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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at the chiral symmetry breaking scale ⇤�, which describes the single-hadron matrix elements
and the associated interactions at LO in the chiral expansion. ⌃ is the exponentiated pion
field, and N is the nucleon field,

⌃ = exp
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f⇡ = 132 MeV is the pion decay constant, aS,⇠ =
1
2

⇣
⇠†aS⇠† + ⇠a†S⇠

⌘
with ⇠ =

p
⌃, and the

ellipsis denotes higher-order interactions including those involving more than one nucleon.
Expanding Eq. (3) in the number of pion fields (neglecting the shift in the WIMP mass
induced by the chiral condensate), the LO contributions to the interactions are
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Matching onto the multi-nucleon interactions is complicated by the fact that contributions
from pion-exchange interactions and from local four-nucleon operators are of the same order
in the chiral expansion, and the coe�cients of the latter are not directly related to multi-
nucleon matrix elements at any order in the chiral expansion. For instance, the four-nucleon
operators involving one insertion of the light-quark mass matrix are of the form [13–15]

LN4,mq = DS,1

⇣
N †N

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DS,2N

†NN †mq,⇠+N

+ DT,1

⇣
N †�aN

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DT,2N

†�aNN †�amq,⇠+N (6)

in the low-energy EFT, where mq,⇠+ = 1
2

⇣
⇠†mq⇠† + ⇠m†

q⇠
⌘
, and �a are the Pauli matrices.

Hence WIMP–two-nucleon interactions are of the form

LN4,� = �GF��
✓
DS,1

⇣
N †N

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DS,2N

†NN †aS,⇠N

+DT,1

⇣
N †�aN

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DT,2N

†�aNN †�aaS,⇠N
◆

. (7)

The importance of the various contributions to the scalar-isoscalar matrix elements can be
estimated using power counting arguments. The second and third terms in Eq. (5) provide
the leading (order Q0, where Q denotes the small ratio of scales in the e↵ective theory) scalar
interactions between the WIMP and the nucleon that generate the impulse approximation
for WIMP-nucleus interactions (see Fig. 1 (left)). In a nucleus, the first term in Eq. (5) gives
rise to a MEC between two nucleons, as shown in Fig. 1 (middle), that naively contributes
at order 1/Q2 in the chiral expansion due to the non-derivative interaction of the pions,

4

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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Nuclear sigma terms
• Previous work suggested scalar-isoscalar dark matter couplings to 

nuclei have O(50%) uncertainty arising from MECs [Prezeau et al 2003]

• Quark mass dependence of nuclear binding energies bounds such 
contributions 

• Lattice calculations + physical point suggest such contributions 
are O(10%) or less for light nuclei

• Admittedly crude approximation to derivative ... stay tuned

T A B L E I I : Co n t r i b u t i o n s t o t h e n u c l e a r � - t e r m s o f t h e d e u t e r o n , 3 H e a n d 4 H e . T h e b i n d i n g e n e r g y
c o n t r i b u t i o n s , �BZ,N , a r e d e r i v e d f r o m t h e n u c l e a r b i n d i n g e n e r g i e s d e t e r m i n e d f r o m l a t t i c e Q CD
c a l c u l a t i o n s , s h o w n i n T a b l e I . T h e q u a n t i t y hm⇡i i s t h e a v e r a g e p i o n m a s s o v e r t h e i n t e r v a l
u s e d t o c o n s t r u c t t h e fi n i t e - d i ↵ e r e n c e e s t i m a t e o f t h e n u c l e a r � - t e r m . T h e s i n g l e - n u c l e o n � - t e r m
c o n t r i b u t i o n , A�N , i s t a k e n f r o m t h e a p p r o x i m a t e e m p i r i c a l r e l a t i o n A�N = Aa1m⇡/2 , a s d e fi n e d
i n t h e t e x t ( w i t h u n c e r t a i n t i e s d e t e r m i n e d f r o m t h e c o v a r i a n c e m a t r i x o f t h e t w o - p a r a m e t e r fi t
[ 5 7 ] ) . T h e fi r s t u n c e r t a i n t y o f e a c h q u a n t i t y i s s t a t i s t i c a l , t h e s e c o n d i s s y s t e m a t i c a n d t h e t h i r d
( w h e r e p r e s e n t ) i s t h e a d d i t i o n a l s y s t e m a t i c a s s o c i a t e d w i t h t h e r e l a t i o n b e t w e e n t h e p i o n m a s s
a n d t h e l i g h t - q u a r k m a s s .
hm⇡i ( M e V ) Q u a n t i t y d 3 H e 4 H e

3 2 5 A�N ( M e V ) 3 2 2 ( 9 ) ( 3 2 ) 4 8 3 ( 1 3 ) ( 4 8 ) 6 4 4 ( 1 7 ) ( 6 4 )
3 2 5 �BZ,N ( M e V ) �4 . 0 8 ( 4 8 ) ( 2 6 ) ( 4 1 ) �5 . 5 ( 1 . 8 ) ( 0 . 9 ) ( 0 . 6 ) �6 . 5 ( 5 . 3 ) ( 3 . 5 ) ( 0 . 7 )
3 2 5 ��Z,N �0 . 0 1 2 5 ( 1 5 ) ( 0 8 ) �0 . 0 1 1 3 ( 3 6 ) ( 1 8 ) �0 . 0 0 9 9 ( 8 1 ) ( 5 4 )
6 5 8 A�N ( M e V ) 6 5 2 ( 1 8 ) ( 6 5 ) 9 7 8 ( 2 6 ) ( 9 8 ) 1 3 0 4 ( 3 5 ) ( 1 3 0 )
6 5 8 �BZ,N ( M e V ) �9 . 1 ( 3 . 7 ) ( 4 . 6 ) ( 0 . 9 ) �5 0 . 8 ( 8 . 0 ) ( 7 . 0 ) ( 5 . 1 ) �7 5 ( 2 6 ) ( 1 9 ) ( 8 )
6 5 8 ��Z,N �0 . 0 1 3 9 ( 5 6 ) ( 7 0 ) �0 . 0 5 1 5 ( 8 1 ) ( 7 1 ) �0 . 0 5 7 ( 2 0 ) ( 1 4 )
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a s c a n b e s e e n i n F i g . 6 .
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p a n e l ) , 3 H e ( m i d d l e p a n e l ) a n d 4 H e ( r i g h t p a n e l ) � - t e r m s .
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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Larger nuclei

• A path to ab initio nuclear 
physics:

• QCD forms a foundation - 
determines few body 
interactions & matrix 
elements

• Match existing many body 
techniques onto QCD

• Hierarchy of methods

• QCD: focus on small A 

• ... for now ...

3
3

3

3
Lattice QCD

Exact many body:
GFMC, NCSM,

lattice EFT

Shell model, 
coupled cluster, 

configuration-interaction

Density 
Functional,
Mean field

Z
N



Heavy quark universe 

• Already seeing LQCD and nuclear EFT coming together

• For heavy quarks, even spectroscopy requires QCD matching

• Equally important for matrix elements at the physical quark 
mass

[Barnea, et al. 1311.4966]
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Matrix elements: philosophy

• Provided the hierarchy of higher-body interactions persists 
into heavy nuclei, power counting of nuclear effective field 
theory:

• 1-body currents are dominant

• 2-body currents are sub-leading and higher-body 
currents are even less important

• Determine one body contributions from single nucleon/
pion systems

• Determine few-body contributions from A=2,3,4... 

• Use EFT and many body methods to extend LQCD results 
to large nuclei



Prospects and Outlook

• Properties and interactions of light nuclei represent an 
important opportunity for LQCD

• Direct impact on NP of light nuclei

• Input to/constraint on nuclear many-body methods can 
greatly improve NP of searches for BSM physics

• Stay tuned



[FIN]



• Neutrino deep-inelastic scattering

• Paschos-Wolfenstein relation:

• NuTeV measure CC and NC neutrino scattering on steel 
target at Fermilab

• Extract the weak mixing angle

NuTeV anomaly: sin2θW

R
−

=
σνN

NC
− σνN

NC

σνN
CC

− σνN
CC

=
1

2
− sin

2
θW



NuTeV anomaly: sin2θW

Standard model prediction for 
running of weak mixing angle

[Qweak]



NuTeV anomaly: sin2θW

Standard model prediction for 
running of weak mixing angle

[Qweak]

2-3σ deviation 
from SM



• Corrected Paschos-Wolfenstein relation:

• NuTeV take some of this into account 

• Many authors find significant reduction in NuTeV significance 
from hadronic/nuclear physics

NuTeV anomaly: sin2θW

Nuclear modifications
Non-isoscalarity

Strange quarks
Charm quarks

R
−

A
=

σνA
NC − σνA

NC

σνA
CC

− σνA
CC

=
1

2
− sin

2
θW + εv + εn + εs + εc



EMC for light nuclei

• E03-103 experiment @ JLab

• High precision studies
of DIS on light nuclei

• Size of EMC effect vs 
nuclear density

• Nontrivial behaviour

• Correlated with strength 
of short range correlations 
[Weinstein et al, PRL. 106 (2011) 052301]
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FIG. 3: (Color online) EMC ratio for 3He [10]. The upper
squares are the raw 3He/2H ratios, while the bottom circles
show the isoscalar EMC ratio (see text). The triangles are the
HERMES results [11] which use a different isoscalar correc-
tion. The solid (dashed) curves are the SLAC A-dependent
fits to Carbon and 3He.

be applied to the nuclear ratios, and in the end, yields
a significantly smaller correction at large x, where the
uncertainty in the neutron structure function is largest.

While applying the isoscalar correction to the 3He
data, using the smeared F2n/F2p ratio, yields a more re-
liable result, there is still some model dependence to this
correction due to the uncertainty in our knowledge of the
neutron structure function. Ref. [14] demonstrated that
much of the inconsistency between different extractions
of the neutron structure function comes from compar-
ing fixed-Q2 calculation to data with varying Q2 values,
rather than from the underlying assumptions of nuclear
effects in the deuteron. Nuclear effects beyond what is
included in Ref. [14], such as the off-shell contribution
δ(off) of Ref. [15], yield a 1–2% decrease to the pro-
ton’s contribution to the deuteron thus increasing the ex-
tracted F2n/F2p ratio by 0.01–0.02. This yields a slightly
reduce correction for 3He which would raise the isoscalar
EMC ratio for 3He by 0.3–0.6% at our kinematics.

The observed nuclear effects are clearly smaller for 3He
than for 4He and 12C. This is again consistent with mod-
els where the EMC effect scales with the average density,
as the average density for 3He is roughly half that of the
12C. However, the results of 9Be are not consistent with
the simple density-dependent fits. The observed EMC
effect in 9Be is essentially identical to what is seen in
12C, even though the density of 9Be is much lower. This
suggests that both the simple mass- or density-scaling
models break down for light nuclei.

One can examine the nuclear dependence based on the
size of the EMC ratio at a fixed x value, but the normal-
ization uncertainties become a significant limiting factor.
If we assume that the shape of the EMC effect is univer-

sal, and only the magnitude varies with target nucleus,
we can compare light nuclei by taking the x dependence
of the ratio in the linear region, 0.35 < x < 0.7, using
the slope as a measure of the relative size of the EMC ef-
fect that is largely unaffected by the normalization. The
slopes are shown for light nuclei in Fig. 4 as a function of
average nuclear density. The average density is calculated
from the ab initio GFMC calculation of the spatial dis-
tributions [16]. Because we expect that it is the presence
of the other (A − 1) nucleons that yields the modifica-
tion to the nuclear structure function, we choose to scale
down this density by a factor of (A − 1)/A, to remove
the struck nucleon’s contribution to the average density.
The EMC effect for 3He is roughly one third of the effect
in 4He, in contrast to the A-dependent fit to the SLAC
data [2], while the large EMC effect in 9Be contradicts a
simple density-dependent effect.

One explanation for the anomalous behavior of 9Be is
that it can be described as a pair of tightly bound alpha
particles plus one additional neutron [17]. While most of
the nucleons are in a dense environment, similar to 4He,
the average density is much lower, as the alphas (and ad-
ditional neutron) ‘orbit’ in a larger volume. This suggests
that it is the local density that drives the modification.
The strong clustering of nucleons in 9Be leads to a special
case where the average density does not reflect the local
environment of the bulk of the protons and neutrons.

FIG. 4: (Color online) The circles show the slope of the
isoscalar EMC ratio for 0.35 < x < 0.7 as a function of nu-
clear density. Error bars include statistical and systematic
uncertainties.

Another possibility is that the x dependence of the
EMC effect is different enough in these light nuclei that
we cannot use the falloff with x as an exact measure of
the relative size of the EMC effect. This too suggests that
the EMC effect is sensitive to the details of the nuclear
structure, which would require further theoretical exami-
nation. At the moment, there are almost no calculations
for light nuclei that include detailed nuclear structure.

In conclusion, we have measured the nuclear depen-
dence of the structure functions for a series of light nu-
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